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Abstract

Implicit time integration coupled with SUPG discretization in space leads to addi-
tional terms that provide consistency and improve the phase accuracy for convection
dominated flows. Recently, it has been suggested that for small Courant numbers
these terms may dominate the streamline diffusion term, ostensibly causing destabi-
lization of the SUPG method. While consistent with a straightforward finite element
stability analysis, this contention is not supported by computational experiments
and contradicts earlier Von-Neumann stability analyses of the semidiscrete SUPG
equations.

This prompts us to re-examine finite element stability of the fully discrete SUPG
equations. A careful analysis of the additional terms reveals that, regardless of the
time step size, they are always dominated by the consistent mass matrix. Conse-
quently, SUPG cannot be destabilized for small Courant numbers. Numerical results
that illustrate our conclusions are reported.
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1 Introduction

Consider the steady state scalar advection-diffusion problem

−ε∇2φ+ b · ∇φ = f in Ω and φ = g on Γ, (1)

where Ω is a bounded open domain in Rn, n = 1, 2, 3 with Lipschitz continuous
boundary Γ, b(x) is a given velocity field with∇·b = 0, and ε ≥ 0 is a constant
diffusion coefficient. When ε = 0 boundary conditions are specified only on
the inflow part Γ− = {x ∈ Γ |b · n < 0} of Γ.

If ε = 0, or (1) is advection dominated, Galerkin finite element solutions of this
problem develop spurious oscillations unless the exact solution happens to be
globally smooth. A popular and efficient remedy is to augment the Galerkin
form of (1) by terms that add artificial dissipation but vanish for all sufficiently
smooth solutions. Resulting schemes are called consistently stabilized methods
because the order of the Galerkin approximation is not affected. A consistently
stabilized method can be written as

G(φh, ψh)+ < R(φh),W (ψh) >h= (f, ψh) , (2)

where G(·, ·) is Galerkin form of (1), R(φh) is the residual of (1), W (ψh) is
weighting operator, and < ·, · >h is a broken L2 inner product defined with
respect to a partition Th of Ω into finite elements. Of particular interest in
this paper is the Streamline Upwind weighting operator

WSUPG(ψh) = b · ∇ψh (3)

and the associated SUPG method [13]. Two other possible choices for the
weighting function are the Galerkin Least-Squares operator

WGLS(ψh) = −ε∇2ψh + b · ∇ψh (4)
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leading to the GLS method of [15], and the multiscale operator

WMS(ψh) = −(−ε∇2ψh − b · ∇ψh) = +ε∇2ψh + b · ∇ψh . (5)

This operator is obtained from the variational multiscale method [11] and
leads to a method originally referred to as the adjoint or the unusual stabilized
Galerkin; see [6], [5]. All three stabilization operators are widely used for steady
state problems where their properties are well-documented and understood;
see e.g. [19,6,5,7,15,13,12,16].

Consider now the time dependent version of (1)

φt − ε∇2φ+ b · ∇φ = f in Ω; φ = g on Γ,

φ(0,x) = φ0(x) in Ω ,

(6)

where φ0 is a given initial data. It is generally agreed that time-space elements
are the most natural setting to develop stabilized methods for (6); see e.g. [19],
[22] or [21]. Already in 1984, Johnson et al. [19] argue that the time derivative
and the advective term should be combined into a single “material derivative”,
so that a natural extension of (3) to (6) is the time-space SUPG weighting
operator

WSUPG(ψh) =
Dψh

Dt
= ψ̇h + b · ∇ψh .

More recently, Hughes et al. [11], [14] demonstrated that stabilized methods
for stationary problems can be derived via a variational multiscale framework
wherein the solution space is split into resolved and unresolved scales, followed
by a defect correction step driven by the residual equation. According to this
viewpoint, which has been extended to time-space in [17], stabilization terms
originate from approximation of the solution operator (the Green’s function)
of the defect equation. Therefore, if the problem is time dependent, consistent
application of variational multiscale stabilization calls for time-space elements.

Nevertheless, some of the most effective and popular algorithms for treating
time-dependent problems can be defined through a process wherein the spatial
and temporal discretizations are separated. Such algorithms are especially well
adapted to the cylindrical nature of the time-space domain and they reduce
(6) to a system of ordinary differential equations (ODE’s) that can be solved
by many of the available time integration methods for ODE’s. As a result,
these algorithms allow reuse of existing spatial finite element frameworks and
deploy a time dependent solution method without significant development of
new software. Thus, in practice, for several reasons, implicit, fully discrete for-
mulations in which spatial and temporal discretizations are effected separately
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are in much more common use than are coupled time-space formulations. Ad-
ditionally, for a large number of computational applications the increased cost
in the number of unknowns for coupled time-space formulations is a significant
drawback.

As numerical experiences have borne out, separated, fully discrete algorithms
are completely adequate for transient calculations carried out for moderate
to relatively large time steps. However, in settings that require very fine time
resolution, the behavior of such algorithms is not very well understood. Re-
cently, Harari [8]-[9] demonstrated that for small time steps the implicit time
integration of parabolic problems leads to a singularly perturbed elliptic prob-
lem with an onset of local spurious oscillations in the vicinity of thin physical
layers. Because for small time steps the fully discrete equation can be viewed
as discretization of an elliptic boundary value problem with a dominant reac-
tion term, the remedy suggested in [8] is to apply adjoint stabilization to this
spatial problem. This is analogous to the approach of [5] but differs from the
Gradient Galerkin Least Squares (GGLS) stabilization advocated in [4] and
[18].

The main focus of this paper is, however, on another potential source of in-
stability that occurs when implicit time integration is coupled with spatial
stabilization. This situation arises whenever, in the development of stabi-
lization methods for (6), one foregoes the time-space setting in favor of the
more conventional separated finite difference/finite element approach. After
discretization in space one obtains the semidiscrete equation

(φh
t , ψ

h) +G(φh, ψh)+ < R̃(φh),W (ψh) >h= (f, ψh) , (7)

where ψh varies only spatially and R̃(φh) contains the time derivative φh
t . We

can rewrite (7) as

(φh
t , ψ

h)+ <φh
t ,W (ψh)>h +G(φh, ψh)+ <R(φh),W (ψh)>h= (f, ψh) , (8)

from where it is clear that the fully-discrete equation will be a weighted average
of a spatially stabilized Galerkin form for the steady-state problem (1) and
a modified mass matrix. The additional “mass” term is contributed by the
time derivative in the residual of (6) and is needed for phase consistency.
In a recent paper, Bradford et al. [1] argue that in conjunction with Crank-
Nicolson implicit time integration this term may have an antidissipative and
destabilizing effect for small time steps. Their finite difference analysis leads to
a sufficient stability condition that requires Courant numbers greater than one
and imposes a lower bound on the admissible time steps. In the next section
we introduce the fully discrete equations, review the arguments of [1], repeat
some of their numerical experiments, and show that a straightforward finite
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element stability analysis will lead to essentially the same sufficient stability
condition for the finite element method. However, our numerical tests fail
to excite a true destabilization in the Petrov-Galerkin method, thus raising
questions about the sharpness of the stability estimates. Motivated by this
discrepancy between analysis and numerical experiments we pursue a more
careful stability analysis of this problem.

2 Fully discrete spatially stabilized equations

Let Th denote a uniformly regular partition of Ω into finite elements K. We
consider affine families of Lagrangian finite element spaces Sh

d where d stands
for the polynomial degree. To discretize (6) in space we use the subspace Sh

d,g

of Sh
d constrained by the essential boundary condition in (6). Approximation

of φ is sought in the form

φh(x, t) =
N∑

i=1

αi(t)Ni(x) ,

where Ni denotes the standard nodal basis of Sh
d .

Let Sh
d,0 denote the subspace of Sh

d consisting of functions that vanish on Γ
(or Γ− if ε = 0.) The spatially stabilized semidiscrete variational problem is
to seek φh(x, t) ∈ Sh

d,g × T such that

M(φh
t (·, t), ψh) +GS(φh(·, t), ψh) = (f(·, t), ψh) ∀ψh ∈ Sh

d,0; t ∈ T , (9)

where

M(φh
t (·, t), ψh) = (φh

t (·, t), ψh) +
∑
K∈Th

(φh
t (·, t), τ(σε∇2ψh + b · ∇ψh))0,K

is an augmented inertial form, and

GS(φh(·, t), ψh) = (εφh(·, t), ψh) + (b · ∇φh(·, t), ψh)

+
∑
K∈Th

(−ε4φh(·, t) + b · ∇φh(·, t), τ(σε∇2ψh + b · ∇ψh))0,K

is a spatially stabilized Galerkin form. In this formulation τ is the stability
parameter, and σ takes on the integer values 0, 1 and −1, corresponding to
SUPG, MS and GLS, respectively.

In what follows we restrict attention to SUPG spatial stabilization (σ = 0)
and use a definition of τ developed in [6]. For the purpose of our study it
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suffices to consider only advection dominated problems. Therefore, we assume
that ε, b and the grid Th are such that

PeK > 3 , (10)

where

PeK(x) =
m‖b(x)‖phK

2ε
,

is the element Peclet number and m is a parameter whose value depends on
the inverse constant 4 for Th. In this case,

τ(x) =
hK

2‖b(x)‖p

, (11)

and if Th is regular, one can show that

τ̌h ≤ τ(x) ≤ τ̂h, ∀K ∈ Th (12)

for some positive constants τ̌ and τ̂ . In what follows we set p = 2 in (11).

The semidiscrete equation (9) is a system of ODE’s

Mαt(t) + Kα(t) = f(t)

for the unknown coefficient vector α(t) = (α1(t), . . . , αN(t)). The matrices M
and K are generated in the usual manner from the bilinear forms M(·, ·) and
GS(·, ·), respectively and f is a vector whose components are L2 products of
the source term and the nodal shape functions Ni. This system may be solved
by any of the available ODE solvers. In this paper we use the θ-method, also
known as the Generalized Trapezoidal Rule. To discretize in time, the interval
(0, T ) is subdivided into L subintervals [tk, tk+1], k = 0, . . . , L with lengths
∆kt. Throughout, fk = f(tk), and φh

k, αk denote approximations to φh(x, tk)
and α(tk), respectively. Given φh

0 , φ
h
k+1 for k = 0, 1, . . . , L− 1 are determined

from the equation

1

∆kt
M(φh

k+1 − φh
k, ψ

h) +GS(φh
θ,k, ψ

h) = (fθ,k, ψ
h) ∀ψh ∈ Sh

d,0, (13)

where 0 ≤ θ ≤ 1 is a real parameter,

φh
θ,k = θφh

k+1 + (1− θ)φh
k

4 Sharp estimates for the inverse constant and other important constants can be
found in [10].
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and likewise for fθ,k. The fully discrete problem (13) is a linear system of
algebraic equations

(M + θ∆ktK)αk+1 = fθ,k + (M− (1− θ)∆ktK)αk . (14)

For θ = 0 the scheme (14) is the explicit Euler method, θ = 1/2 gives the
second-order neutrally stable Crank-Nicolson method, and θ = 1 gives the
first-order accurate implicit Euler rule. In what follows it will be convenient
to introduce the bilinear form

B(φh, ψh; ρ, θ) = ρM(φh, ψh) + θGS(φh, ψh) (15)

that is a weighted average of the inertial form and the spatially stabilized
Galerkin form. This form engenders the problem that advances the discrete
solution by one time step and will be in the focus of our stability analysis.

The following result holds true; see [6,5,7] and [19].

Theorem 1 Assume that ∇ · b = 0, g = 0 on Γ and ε ≥ 0. Then, for the
weighting operators in (3)-(5)

GS(ψh, ψh) ≥ 1

2

(
ε‖∇ψh‖2

0 + ‖τ 1/2b · ∇ψ‖2
0

)
∀ψh ∈ Sh

d,0 . (16)

2.1 Preliminary analysis

Consider (6) in 1D and assume that ε = 0. The discrete equation (14) resulting
from the combination of SUPG stabilization in space (σ = 0) and Crank-
Nicolson implicit integration in time (θ = 1/2) is viewed in [1] as a finite
difference approximation of the modified equation

φt + bφx − τ(x)(b2φxx + bφxt) = f , (17)

where the definition

τ(x) =
4x

|b|
√

15
(18)

is employed. For 1D pure advection problems, this choice maximizes the phase
accuracy in the semidiscrete equation [20].

The ”streamline” derivative φxx is contributed by the SUPG stabilization while
φxt results from the coupling between φt and the spatial weight function.
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Assume now that φh is a discontinuous pulse and let ∆φ = φh
R − φh

L > 0
denote its amplitude. The additional terms in (17) are estimated in [1] by

φxx ≈ CFL
4φ

2(4x)2
and φxt ≈ −CFL 4φ

24x4t
,

respectively, where

CFL = b
4t
4x

is the Courant number. The total modification in (17) is then estimated as

τ(x)(b2φxx + bφxt) ≈ τ(x)
b24φ

2(4x)2

(
CFL− 1

)
,

and a conclusion is drawn that for CFL < 1 the term φxt will dominate the
streamline derivative, causing destabilization of the Petrov-Galerkin formula-
tion. To avoid the antidissipative effect of this term, it is suggested that the
time step should satisfy the stability condition CFL > 1, or

4t > 4x
|b|

. (19)

Next, we obtain a formal finite element stability estimate that leads to the
same conclusion. This rather disturbing result ostensibly implies that for sta-
bility the CFL number should be greater than 1, however, for accuracy in
following transient advection we desire to have CFL < 1.

Theorem 2 Assume that ε, b and Th are such that (10) holds. Then, for
σ = 0 (SUPG spatial stabilization)

B(ψh, ψh; ρ, θ)≥ ρ

2
‖ψh‖2

0 + θ

(
ε

2
‖∇ψh‖2

0 +
τ̌h

2

(
1− ρ(τ̂h)

2

θ(τ̌h)

)
‖b · ∇ψh‖2

0

)
(20)

for all ψh ∈ Sh
d,0.

Proof. To prove the theorem we estimate the inertial term M(·, ·) and use
the available bound (16) for the spatially stabilized component of B(·, ·; ρ, θ).
Successive use of Cauchy’s inequality and the ε− inequality give

M(ψh, ψh) = (ψh, ψh) +
∑
K∈Th

(ψh, τb · ∇ψh)0,K

≥‖ψh‖2
0 −

∑
K∈Th

τ̂h‖ψh‖0,K‖b · ∇ψh‖0,K

≥‖ψh‖2
0 −

1

2

 ∑
K∈Th

‖ψh‖2
0,K + (τ̂h)2‖b · ∇ψh‖2

0,K
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≥ 1

2

(
‖ψh‖2

0−(τ̂h)2‖b·∇ψh‖2
0

)
.

The theorem now easily follows by combining the last bound with (16). 2

For a pure advection problem with constant advective velocity b and a uniform
mesh, (11) implies 5 that

τ(x) =
h

2‖b‖2

= const and τ̌ = τ̂ =
1

2‖b‖2

.

In this case (20) simplifies to

B(ψh, ψh; ρ, θ) ≥ ρ

2
‖ψh‖2

0 + τ
θ

2

(
1− ρτ

θ

)
‖b · ∇ψh‖2

0 .

For Crank-Nicolson θ = 1/2, and since ρ = 1/4t,

1− ρτ

θ
= 1− h

4t|b|
=

1

CFL
(CFL− 1) .

As a result, the streamline coefficient will be positive if CFL > 1, i.e., we have
obtained the same stability condition as in [1]. Let us now check this stability
condition against some numerical experiments.

Following [1] we set b = 0.001ms−1, ∆x = 0.1, ∆t = 1s, which makes CFL
equal to 0.01. Then we compute solutions of the fully discrete equations with
and without SUPG stabilization for different final times using Crank-Nicolson
and two different sets of initial and boundary data. The first set

φ0(x) = 0 and g = g(0) = 100 , (21)

is the same as the one used in [1]. However, for the second set we change the
initial condition to a square pulse and set homogeneous data on the inflow:

φ0(x) =


100 if 0.25 ≤ x ≤ 0.5

0 otherwise

, and g = g(0) = 0 . (22)

5 It is possible to extend (18) to multiple dimensions. For example, in [13] the
formula τ = (‖bξ‖2hξ+‖bη‖2hη|)/(‖b‖2

2

√
15) is proposed for quadrilateral elements.

Using this formula in lieu of (11) would have changed τ̌ and τ̂ to

1
‖b‖2

√
15

and
√

2
‖b‖2

√
15

,

respectively, which is not essential to our discussion.
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Fig. 1. Galerkin (dashed) vs. SUPG (solid) solutions for (21).
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Fig. 2. Galerkin (dashed) vs. SUPG (solid) solutions for (22).

Plots of the Galerkin and SUPG solutions at t = 100s and t = 500s are shown
in Figures 1-2.

The left plot in Figure 1 shows that at early times SUPG solution tends to
develop stronger undershoot at the base of the advancing discontinuity. The
right plot shows that in later times the undershoots of SUPG and Galerkin
solutions are about the same. Nevertheless, in both cases the SUPG solution
does not appear to be substantially better than the Galerkin one, which lends
some credence to the possibility that the extra mass term is destabilizing.

However, the second set of plots presented in Fig. 2, shows that such a conclu-
sion is unfounded and that each method behaves as advertised: the Galerkin
solution quickly develops global spurious oscillations, while SUPG continues to
successfully suppress these oscillations, even for very small Courant numbers.

To reconcile the stability criterion (19) with the numerical results shown in
Figures 1-2, it is important to recognize that the former is only a sufficient
but not a necessary condition for stability. As such, (19) does imply stability
when satisfied, but it does not imply instability when not satisfied. In fact,
a sufficient condition may turn out to be too pessimistic. Let us show that
this is indeed the case for the examples considered so far. The next Theorem
sharpens the stability bound (20) for problems where τ can be set to the same
mesh dependent constant throughout the domain Ω.
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Theorem 3 Assume that ε, b and Th are such that

τ(x) = δh ∀x ∈ Ω

for some positive constant δ. Then, for σ = 0 (SUPG spatial stabilization)

B(ψh, ψh; ρ, θ) ≥ ρ

2
‖ψh‖2

0 + θ
( ε
2
‖∇ψh‖2

0 + δh‖b · ∇ψh‖2
0

)
(23)

for all ψh ∈ Sh
d,0.

Proof. As in the proof of Theorem 2 we start by bounding the inertial term
M(·, ·). The difference is that now τ can be factored out and all element
integrals can be collected in a single integral over Ω:

M(ψh, ψh) = (ψh, ψh) +
∑
K∈Th

(ψh, τb · ∇ψh)0,K = ‖ψh‖2
0 + τ(ψh,b · ∇ψh)0,Ω .

Consider first the case when ε > 0. Because b is solenoidal and ψh vanishes
on Γ, integration by parts shows that

2
∫
Ω

ψh(b · ∇ψh) dΩ = −
∫
Ω

(ψh)2∇ · b dΩ +
∫
Γ

(ψh)2n · b dΓ = 0 .

If ε = 0 then n · b ≥ 0 on Γ+ and

2
∫
Ω

ψh(b · ∇ψh) dΩ =
∫

Γ+

(ψh)2n · b dΓ ≥ 0 .

In either case,
M(ψh, ψh) ≥ ‖ψh‖2

0 ,

which in combination with (16) proves the theorem. 2

Theorem 3 leads to a sharper stability bound because it accounts for the
fact that for constant τ the additional “mass” term is either skew or gives
a nonnegative contribution regardless of the time step. Therefore, this term
cannot be destabilizing because it will either vanish or add, rather than take
away stability!

Such a conclusion does not contradict the more cautious stability condition
(20), because, again, violation of (20) does not imply instability. However, (20)
is too conservative to be of any predictive value for the model problems used
in our numerical experiments. The lack of sharpness in this condition is caused
by the early use of the Cauchy’s inequality in the proof of (20). This forces an
estimate of the extra mass term by the streamline derivative and leads to the
subsequent subtraction of beneficial streamline diffusion. Consequently, the
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proof cannot take advantage of the fact that τ is constant and that element
integrals can be combined to form a skew term.

While conclusions of Theorem 3 are valid in a specific setting, they indicate
a strong possibility that the sufficient stability condition (19) inferred from
Theorem 2 may be unduly restrictive even for a variable τ . In the next section
we develop sharp upper bounds for the additional mass term and show that
this is indeed the case. Using these bounds we prove stability of SUPG finite
elements for arbitrary CFL numbers.

3 Stability analysis of fully discrete equations

The bilinear form B(·, ·; ρ, θ) serves to define the algebraic problem that ad-
vances the solution to the next time level. The main goal of this section is
to determine whether or not the additional terms engendered by the coupling
between the spatial weight function and the time dependent residual can desta-
bilize the time stepping process by destroying the coercivity of B(·, ·; ρ, θ). To
avoid unnecessary technical details, in addition to (10) we will assume that
τ(x) is constant on each element, that is, for all K ∈ Th

τ(x)|K = τ(K) ∀x ∈ K .

In what follows we will consider general advective-diffusive problems and uni-
formly regular (but not necessarily uniform) partitions Th. The key to proving
sharp stability conditions will be to obtain tight bounds for the additional
“mass” term. For this purpose we begin with a technical lemma that esti-
mates this term for a variable τ .

Lemma 1 Assume that ε, b and Th are such that (10) holds and that ∇·b = 0
and ‖b‖∞,Ω ≤ β for some positive constant β. Then∑

K∈Th

τ(K) (ψh,b · ∇ψh)0,K ≤ hC‖ψh‖2
0,Ω (24)

where C is a positive constant that depends on the diameter of Ω, the polyno-
mial degree d, the values of β, τ̌ and τ̂ , but is independent of h.

Proof. We give a detailed proof in two space dimensions. The proof in three
dimensions follows by minor modifications. Let K ∈ Th be an arbitrary ele-
ment. Because ∇ · b = 0 integration by parts gives∫

K

ψh (b · ∇ψh) d x =
1

2

∫
∂K

(ψh)2n · b dS .
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On each element ψh is a polynomial function of degree at most d, and so, its
square is a polynomial of degree at most 2d

(ψh)2 =

(ndof∑
i=0

ψiNi

)2

= a00 + a10x+ a01y + a11xy + . . .+ addx
dyd ,

with coefficients

aij =
d∑

k,l=1

ψki
ψlj

that are linear combinations of the products of the nodal coefficients of ψh.
Because b is divergence free,∫

∂K

n · b dS =
∫
K

∇ · b dx = 0 . (25)

As a result, after inserting the polynomial expression for (ψh)2 into the bound-
ary integral, contribution from the constant term a00 will vanish so that∫

∂K

(ψh)2n · b dS =
∫

∂K

(a10x+ a01y + . . .)n · b dS .

Let xP = (xP , yP ) denote one of the vertices of K. Because Th is assumed to
be uniformly regular, changing variables according to

x = x̂+ xP and y = ŷ + yP

takes K inside a box [−Ch,Ch]2, where C is a constant that does not depend
on the particular element K. Therefore,

∫
∂K

(a10x+ a01y + . . .)n · b dS

=
∫

∂K̂

(a10(x̂+ xP ) + a01(ŷ + yP ) + . . .)n · b dŜ

=
∫

∂K̂

(a10xP + a01yP + . . .)n · b dŜ +
∫

∂K̂

(a10x̂+ a01ŷ + . . .)n · b dŜ

=
∫

∂K̂

(â10x̂+ â01ŷ + . . .)n · b dŜ

where we have used (25) and that a10xP + a01yP + . . . is a constant. The new
coefficients

âij =
d∑

k,l=1

µij(xP , d)akilj

13



are linear combinations of the old coefficients akl with factors µij(xP , d) that
depend only on the polynomial degree and the diameter of Ω. This gives the
intermediate bound∫

K

ψh(b · ∇ψh) dx ≤ 1

2
max |âij| ‖b‖∞,K

∫
∂K̂

(|x̂|+ |ŷ|+ . . .) dŜ . (26)

To estimate the terms on the right hand side of (26) we first note that

max
i,j

|âij| ≤ C(Ω, d) max
k,l

|akl| ,

and that
max

k,l
|akl| ≤ C(d) max

i,j
|ψiψj|.

Because for nodal finite element bases

max
0≤i≤Ndof

|ψi| ≤ ‖ψh‖∞,K

it is not hard to see that

max
i,j

|âij| ≤ C(Ω, d)‖ψh‖2
∞,K ,

where C(Ω, d) depends only on the diameter of Ω and the polynomial degree d
of the finite element space, but not on mesh parameter h. Because the length
of ∂K̂ is of order O(h) ∫

∂K̂

|x̂| dŜ =
∫

∂K̂

|ŷ| dŜ = O(h2) .

Therefore, the line integral on the right hand side in (26) contributes terms of
order O(h2) and higher. To complete the proof we recall the inverse inequality;
see [3], [10],

‖ψh‖∞,K ≤ CIh
−n/2‖ψh‖0,K .

Combining all estimates together and setting n = 2 gives∫
K

ψh(b · ∇ψh) dx ≤ 1

2
C(Ω, d)h2‖ψh‖2

∞,K ‖b‖∞,K ≤
1

2
C(Ω, d)‖ψh‖2

0,K ‖b‖∞,K .

The Lemma follows by observing that τ(K) = O(h). 2

This result shows that for solenoidal advection fields the additional mass term
contributed by the coupling between the SUPG operator and the finite dif-
ference in time can be completely absorbed in the consistent mass matrix. In
particular, it will never dominate the streamline diffusion term and the amount
of stabilizing streamline diffusion in B(·, ·, ρ, θ) will not decrease when the time
step is reduced. These observations are formalized in the next Theorem.
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Fig. 3. Nonuniform meshes: mesh (A) -left, mesh (B) - right.

Theorem 4 Under the same assumptions as in Lemma 1 and for σ = 0
(SUPG spatial stabilization)

B(ψh, ψh; ρ, θ)≥ ρ

2
(1− C1h) ‖ψh‖2

0 + θ
(
ε

2
‖∇ψh‖2

0 + C2h‖b · ∇ψh‖2
0

)
(27)

for all ψh ∈ Sh
d,0.

Proof. Follows immediately from Lemma 1 and (16). 2

The main conclusion from this theorem is that streamline upwinding in space
can be safely coupled with implicit time stepping. Nevertheless, one should
be aware of the fact that reduction in the time step will change the balance
between the mass and the stiffness matrices in the discrete equation. For very
small time steps B(·, ·, ρ, θ) will correspond to a discretization of a singularly
perturbed problem and the onset of spurious oscillations in the vicinity of thin
layers may be expected; see [9].

4 Numerical results

In this section we test how well the stability theory developed in Theorem
4 matches with computation. Our main focus is on the behavior of the fully
discrete equations for small time steps.

According to Theorem 4 application of SUPG stabilization in space leads to a
harmless additional term that can be absorbed in the consistent mass matrix
for any Courant number. Therefore, this theorem guarantees computational
stability for small time steps with, perhaps, the exception of small localized
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oscillations in the vicinity of sharp layers. We remind the reader that these
are caused by the singularly perturbed nature of the equations as ∆t 7→ 0.

To test the conclusion of Theorem 4 we compare Galerkin and SUPG solutions
of (6) in the pure advection limit 6 , i.e., for ε = 0. Several different time steps
are used to provide a representative range of CFL values for each example
problem. In all experiments Ω is the unit square, Th is a uniform triangulation
of Ω into triangles and Sh

d is the standard Lagrangian space consisting of C0

piecewise polynomial functions whose restrictions to each element K of Th are
quadratic polynomials (d = 2).

We begin by solving all examples on a uniform mesh obtained by subdividing
Ω into 400 squares and then drawing the diagonal in each one of them. This
gives a partition containing 800 triangles with a mesh parameter h = 0.05,
and a finite element space Sh

2 with 1681 degrees of freedom. The space Sh
2,0

is defined by setting all nodal degrees of freedom that belong to Γ− to zero.
All matrices and right hand sides are assembled using a quintic (7 point)
quadrature rule [2, p.343].

Then we repeat the experiments using two different nonuniform meshes shown
in Figure 3 and having the same number of elements. Mesh (A) is a smooth
deformation of the original uniform mesh. Mesh (B) is obtained by a random
perturbation of the nodes in the uniform mesh.

Results from calculations on uniform grids are plotted by using the nodal
values of the finite element solution. For nonuniform grids results are plotted
by first generating the values of the finite element solution on a 41×41 uniform
interpolation mesh. Thus, in all plots the axes are labeled by the node number,
either with respect to the original uniform grid, or with respect to the uniform
grid used to interpolate the finite element solution.

∆t 0.1 0.01 0.001 0.0005

CFL 2.442 0.2442 0.02442 0.0122

Method H1 seminorm

Galerkin 0.8357E+01 0.8278E+01 0.8298E+01 0.8300E+01

SUPG 0.6390E+01 0.4715E+01 0.4684E+01 0.4684E+01
Table 1
Example 1. H1 seminorm of finite element solutions at t = 0.5.

6 We note that in this case adjoint and GLS weighting operators reduce to SUPG
stabilization.

16



∆t 0.1 0.01 0.001 0.0005

CFLmax 6.7204 0.67204 0.06720 0.0336

Method H1 seminorm

Galerkin 0.8868E+01 0.8303E+01 0.8073E+01 0.8069E+01

SUPG 0.6943E+01 0.3720E+01 0.3640E+01 0.3639E+01
Table 2
Example 2. H1 seminorm of finite element solutions at t = 0.5.

∆t 0.1 0.01 0.001 0.0005

CFLmax 22.361 2.2361 0.22361 0.1118

Method H1 seminorm

Galerkin 0.1030E+02 0.9253E+01 0.9204E+01 0.9205E+01

SUPG 0.7207E+01 0.6290E+01 0.6289E+01 0.6289E+01
Table 3
Example 3. H1 seminorm of finite element solutions at t = 0.5.

Example 1. The first model problem used in the numerical study is (6) with

b1 =

 1.0

0.7002075

 ; g = 0;

and

φ0(x) =


1 if |x− xC | ≤ 0.2

0 otherwise

, xC =

 0.25

0.25

 . (28)

The choice of b1 and the initial and boundary data corresponds to an advection
of a cylinder of unit height, radius 0.2, and positioned at xC in a direction
skew to the mesh orientation. The homogeneous boundary data is specified
on the inflow portion of the boundary

Γ− = {x ∈ Ω̄; x = 0} ∪ {x ∈ Ω̄; y = 0} .

Example 2. The second model problem is (6) with the variable solenoidal
advective field

b2 =

 y
x

+

 1.0

0.7002075
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and the same initial and boundary data as in (28). The inflow boundary
remains the same as in Example 1.

Example 3. The last model problem in our numerical study is (6) with

b3 = 10

 y

0.5− x

 ; φ0(x) = 0 ,

and inhomogeneous boundary data

g =



0 if y = 0 and 0 ≤ x < 0.125 or 0.375 < x ≤ 0.5

1 if y = 0 and 0.125 ≤ x ≤ 0.375

0 if x = 0 or y = 1 and 0.5 ≤ x ≤ 1

.

This example corresponds to a circular advection of an initial square profile.
Note that in this case

Γ−= {x ∈ Ω̄; x = 0} ∪ {x ∈ Ω̄; y = 1 and 0.5 ≤ x ≤ 1}
∪{x ∈ Ω̄; y = 0 and 0 ≤ x ≤ 0.5} .

The three example problems are discretized in time using the neutrally stable
Crank-Nicolson method (θ = 0.5) and a uniform time step ∆t. The inhomo-
geneous initial condition in Example 3 is approximated by its nodal inter-
polant out of Sh

2 The fully discrete equation (13) is solved for different time
steps using a direct solver from the LAPACK library. In particular, we choose
∆1t = 0.1, ∆2t = 0.01, ∆3t = 0.001 and ∆4t = 0.0005, and integrate in time
until t = 0.5. The number of time steps required in each case is 5, 50, 500 and
1000, respectively. The choice of time steps ensures that CFL numbers for all
three examples include values above and below one.

Figures 4, 6 and 8 show contours of the three example solutions at t = 0.5
computed using the four different time steps. Each refinement of the time step
leads to a reduction in the CFL number. From these plots it is clear that
stability of the SUPG solution does not suffer when the time step is refined.
This conclusion is also confirmed by plots of solution profiles along selected
x and y coordinate values, presented in Figures 5, 7 and 9. In all cases we
see that the first two time refinement steps improve the accuracy of SUPG
solutions, while the last refinement does not lead to a appreciable change in
these solutions, i.e., they have converged in time.

The absence of destabilization in the SUPG solutions, as the time step is being
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Mesh Example 1 Example 2 Example 3

Uniform 0.4684E+01 0.3639E+01 0.6289E+01

Mesh (A) 0.4157E+01 0.3159E+01 0.5722E+01

Mesh (B) 0.4609E+01 0.3434E+01 0.6026E+01
Table 4
H1 seminorms of finite element solutions at t = 0.5 computed on different meshes
and ∆t = 0.0005.

refined, can also be verified by inspecting their H1 seminorm in Tables 1, 2 and
3. The top two rows in these tables show the time step and the associated CFL
number. (For variable advection fields the maximal CFL number is reported.)
In all three example cases the H1 seminorm, which measures the amount of
oscillation in the solution, does not change as the time step is reduced from
∆3t to the final value ∆4t.

When the uniform grid was substituted by either one of the two nonuniform
grids shown in Fig. 3, Galerkin and SUPG solutions did not change appre-
ciably in their behavior. For this reason, below we limit ourselves to just a
few snapshots of the finite element solutions on the nonuniform meshes com-
puted using the finest time step ∆4t. Figure 10 shows solutions of the three
example problems at three different instants in time computed on mesh (A).
Figure 11 shows the same time snapshots but computed using the randomly
perturbed mesh (B). In both cases we see that SUPG stabilization performs
an exemplary job in suppressing the global spurious oscillations, and that no
destabilization is present in the solutions. The absence of destabilization on
the two non-uniform grids can also be inferred from the data in Table 4. We
see that H1 seminorms of solutions computed on the non-uniform grids remain
bounded by the seminorm values on the uniform grid.

In summary, our results clearly show the expected pollution by global spurious
oscillation in the Galerkin solution and their successful suppression by the
SUPG stabilization for all time steps considered in this study. Regarding the
small localized oscillations in SUPG solutions we recall that SUPG is not
monotonicity preserving, and that such oscillations can be expected in the
vicinity of discontinuities and internal layers. Therefore, their presence cannot
serve as an indication of a destabilization. Moreover, as the data in tables 1-3
shows, smaller time steps do not lead to an increase in the H1 seminorm of
the solutions, i.e., these oscillations remain bounded for small time steps. An
application of a discontinuity capturing operator [16] is recommended for a
further suppression of these oscillations.
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Fig. 4. Example 1. Galerkin (left) and SUPG (right) solutions at t = 0.5 computed
with ∆t = 0.1, ∆t = 0.01, ∆t = 0.001, and ∆t = 0.0005.
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Fig. 5. Example 1. Slices of Galerkin (dashed) and SUPG (solid) solutions at y = 0.6
(left), x = 0.75 (right) and t = 0.5 computed with ∆t = 0.1, ∆t = 0.01, ∆t = 0.001,
and ∆t = 0.0005.

5 Conclusions

We have considered fully discrete problems obtained by coupling implicit in-
tegration in time with spatial advective stabilization. Such formulations serve
as an alternative to space-time discretizations and offer many advantages in
the algorithmic development.
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Fig. 6. Example 2. Galerkin (left) and SUPG (right) solutions at t = 0.5 computed
with ∆t = 0.1, ∆t = 0.01, ∆t = 0.001, and ∆t = 0.0005.
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Fig. 7. Example 2. Slices of Galerkin (dashed) and SUPG (solid) solutions at
y = 0.85 (left), x = 1.0 (right) and t = 0.5 computed with ∆t = 0.1, ∆t = 0.01,
∆t = 0.001, and ∆t = 0.0005.

Our results show that some concerns raised about the possible destabilizing
effect of Petrov-Galerkin upwinding in that context, and for small time steps,
are unfounded. In fact, application of the streamline upwind stabilization op-
erator in conjunction with implicit time integration can be considered as a
safe separated discretization that does not lead to any additional stability
restrictions on the Peclet or Courant numbers.

Galerkin least squares and multiscale (adjoint) stabilization cases will be a
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Fig. 8. Example 3. Galerkin (left) and SUPG (right) solutions at t = 0.5 computed
with ∆t = 0.1, ∆t = 0.01, ∆t = 0.001, and ∆t = 0.0005.
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Fig. 9. Example 3. Slices of Galerkin (dashed) and SUPG (solid) solutions at y = 0
(left), y = 0.25 (right) and t = 0.5 computed with ∆t = 0.1, ∆t = 0.01, ∆t = 0.001,
and ∆t = 0.0005.

subject of a forthcoming paper.

In closing, we stress upon the fact that the numerical results presented in this
paper are in excellent agreement with the theory and demonstrate that our
analytical results are sharp. These results also hold with minor modifications
for fully discrete formulation of the advective-diffusive-reactive model. Our
conclusions about stability of fully-discrete equations are also consistent with
an earlier Von Neumann stability analysis of the semidiscrete SUPG equation
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Fig. 10. Snapshots of SUPG solutions for example problems 1 (top), 2 (middle) and
3 (bottom) at t = 0.05, t = 0.25 and t = 0.5 and nonuniform mesh (A).

carried out in [12] for uniform grids.
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